
IBM DB2 Universal Database V8.1
Database Administration Certification Preparation Course

Maintained by Clara Liu

Chapter 9: Storage Management

Objectives

In this section, we will cover:
DB2 Process Model
DB2 Memory Model
DB2 Table Spaces
Managing Table Spaces
Performance Considerations

DB2 Process Model
DB2 Memory Model
DB2 Table Spaces
Managing Table Spaces
Performance Considerations

Chapter 9: Storage Management

SERVER
MACHINE

REMOTE
CLIENT
MACHINE

SERVER
MACHINE

DB2
PROCESSES
(THREADS)

USER
PROCESSES
(THREADS)

Per-connection processes
(threads)

Per-instance processes (threads)

Per-request
processes
(threads)

App A
"SQL
CONNECT
TO TEST"

App A

App B

App C

App B
"SQL
CONNECT
TO TEST"

App C
"SQL
CONNECT
TO PROD"

Database
"TEST"

Database
"PROD"

db2agntp

db2agntp

db2agntp

db2agntp

db2agntp

db2agntp

db2agent

db2agent

db2agent

db2ipccm

db2tcpcm

.....

db2pfchr

db2pclnr

db2loggr db2dlock

db2wdog

db2sysc

db2gds

db2resyn
db2agent

db2bm
db2med
etc

db2cart

db2dart

Active
subagents

Pool of "idle"
subagents

Coordinator
agent

Unassociated
Idle agents

db2dari

Fenced Stored Procedure
Processes

db2udfp

Fenced
UDFs
processes

Shared mem and
semaphores

TCPIP

db2pfchr

db2pclnr

db2loggr db2dlock

Per-active db
processes
(threads)

DB2 Process Model

Connection-level processes:
db2agent - coordinator agent performs database requests on behalf of clients
db2agntp - subagents receive requests from coordinator agent

Database-level processes:
db2tcpcm, db2snacm, db2ipccm, et al. - communication listeners that provide connection
support for local and remote clients
db2pfchr - I/O prefetchers
db2pclnr - buffer pool page cleaners
db2loggr - manipulates log files to handle transaction processing and recovery
db2dlock - deadlock detector

Instance-level processes:
db2sysc - system controller
db2resyn - resync agent that scans the global resync list
db2gds - global daemon spawner to start new processes (UNIX-only)
db2wdog - watchdog process to handle abnormal terminations (UNIX-only)
db2udf - fenced UDFs run outside of DB2's address space
db2dari - fenced stored procedures run outside of DB2's address space

DB2 Process Model

Communication between the database manager and client and client
applications

Unix: processes
Intel: threads

Processes/threads
Logical agent

Represents a connected application to the database manager
Contains information and control blocks required by an application
Controled by MAX_LOGIAGENTS DBM configuration parameter

Worker agent
Carries out application requests
No permanent attachment to any particular application
Contains all information and control blocks require to complete actions
4 types of worker agents

Active coordinator agents
Subagents
Inactive agents
Idle agents

DB2 Agents

DB2 Process Model
DB2 Memory Model
DB2 Table Spaces
Managing Table Spaces
Performance Considerations

Chapter 9: Storage Management

Database
Global Memory

Database Manager
Shared Memory

Database
Global Memory

Application
Global Memory

Application
Global Memory

Agent
Private Memory

Agent
Private Memory

[1]

[1]

[1]

[numdb]

[maxappls]

[maxagents]

DB2 Memory Model

DB2 Memory Model
Audit buffer size
(audit_buf_sz)

Monitor heap
(mon_heap_sz)

Database Manager Shared
Memory

(including FCM)

(app_ctl_heap_sz)

Application Global
Memory

Agent stack
(agent_stack_sz)

DRDA heap
(drda_heap_sz)

Statistics heap
(stat_heap_sz)

UDF memory
(udf_mem_sz)

Sort heap
(sortheap)

Statement heap
(stmtheap)

Application
heap

(applheapsz)

Query heap
(query_heap_sz)

Java heap
(java_heap_sz)

Client I/O block
(rqrioblk)

Agent Private
Memory

(remote)

Application support layer heap
(aslheapsz)

Client I/O block
(rqrioblk)

Agent/Application Shared
Memory

(local)

Database heap
(dbheap)

Utility heap
(util_heap_sz)

Backup buffer
(backbufsz)

Restore buffer
(restbufsz)

Package cache
(pckcachesz)

Log buffer
(logbufsz)

Catalog cache
(catalogcache_sz)

Bufferpools
(buffpage)

Extended memory cache

Locklist
(locklist)

Database Global
Memory

Database Manager Shared Memory Set
Stores all relevant information for a particular instance, such as lists of all active connections
and security information

Database Shared Memory Set
Stores information relevant to a particular database, such as package caches, log buffers, and
bufferpools

Application Shared Memory Set
Stores information that is shared between DB2 and a particular application, primarily rows of
data being passed to or from the database

Agent Private Memory Set
Stores information that is used by DB2 to service a particular application, such as sort heaps,
cursor information, and session contexts

DB2 Shared Memory Sets

Used to buffer data in memory to reduce the number of I/O operations to
the physical database
Keep often requested data/index pages in memory
Keep infrequently accessed tables (e.g. random access into very large
table) out of main memory
Most data manipulation takes place in buffer pools, except for large objects
and long field data
IBMDEFAULTBP is the default bufferpool created with every database
Ability to keep large number of pages in extended storage cache

Buffer Pools

Default

EXTENDED STORAGE

Global Database
Memory

IBMDEFAULTBP MYBUFF1 MYBUFF2 MYBUFF3

Table
spaces

Buffer pools

Extended
Storage

SYSCATSPACE TEMPSPACE1 USERSPACE1 MYREGSPACE MYTEMPSPACE MYLONGSPACE

Buffer Pool Overview

Memory for the buffer pool is allocated when the database is activated or
when the first application connects to the database
Command to create buffer pool

CREATE BUFFERPOOL bpname IMMEDIATE SIZE sz PAGESIZE pgsz
CREATE BUFFERPOOL bpname DEFERRED SIZE sz PAGESIZE pgsz

IMMEDIATE
The buffer pool will be created immediately. If there is not enough reserved space in the
database shared memory to allocate the new buffer pool, a warning (SQLSTATE 01657) is
returned, and the statement is executed DEFERRED

DEFERRED
The buffer pool will be created when the database is reactivated (all applications need to be
disconnected from the database)

Information stored in SYSIBM.SYSBUFFERPOOLS

Management of Buffer Pools

Use the ALTER BUFFERPOOL command to increase the size of the
buffer pool, memory is allocated as soon as the command is committed if
the memory is available.
If the memory is not available, the changed occurs when all applications
are disconnected and the database is reactivated.
If the size of the buffer pool is decreased, memory is deallocated at
commit time
Alter size of a buffer pool

ALTER BUFFERPOOL bpname IMMEDIATE SIZE sz
ALTER BUFFERPOOL bpname DEFERRED SIZE sz

Management of Buffer Pools

DB2 Process Model
DB2 Memory Model
DB2 Table Spaces
Managing Table Spaces
Performance Considerations

Chapter 9: Storage Management

Table Spaces

All database objects are stored within table spaces
Three types of table space:

REGULAR
LARGE
TEMPORARY

REGULAR table space stores all data except for temporary tables
LARGE table space stores long or LOB data, it must be a DMS table space
TEMPORARY table space, two types:

SYSTEM TEMPORARY table space
A work area used by the database manager to perform operations such as sorts or joins
A database must have at least one SYSTEM TEMPORARY table space
A default SYSTEM TEMPORARY table space is created at database creation time

USER TEMPORARY table space
Stores declared global temporary tables
No user temporary tablespaces exist when a database is created

Table Spaces

Two types of storage:
System Managed Space (SMS)
Database Managed Space (DMS)

Table spaces are either 4K, 8K, 16K or 32K pages, 4K is default size
Cannot mix page sizes within a table space
Must be associated with a bufferpool in same page size
Table space composed of one or more containers
Data allocated by extents within containers
Three table spaces created by default (all SMS)

SYSCATSPACE - system catalog tables
TEMPSPACE1 - temporary data
USERSPACE1 - default user data

 Container is an Allocation of Physical Space

File Directory Device

Intel

UNIX

DMS

DMS

SMS

SMS

DMS

DMS

Windows
NT DMS SMS DMS

What Does a Container Look Like?

File
Directory

Device

Containers

Table Spaces and Containers

Table Table Table

Database 1

Table Space 3 Table Space 4 Table Space 5 Table Space 6

Index Data Long Data

page

Extent = 32 Pages
(Default)

Container
0

0 2
Container

1

1 3

Table space
B

Extent

Containers and Extents

DFT_EXTENT_SZ defined at database level
EXTENTSIZE defined per table space
Once a table space is created, EXTENTSIZE cannot be changed
An extent consists of multiple pages
Data written to containers based on the extent map

SMS Characteristics
All table data and indexes share the same table space
Each table in a table space is given its own file name used by all containers

The file extension denotes the type of the data stored in the file
Dynamic file growth
Upper boundary on size governed by:

Number of containers
Operating System limit on size of file system
Operating System limit on size of individual files

If table space has more than one container, they are suggested to be in the
same size (or close to same size)

When all space in a single container is allocated, the table space is considered full even if space
remains in other containers

New containers can only be added to SMS on a partition that does not yet
have any containers
UNIX: file system size may be increased
Very easy to administer
Recommended for TEMP table space

/mydir1/SQL00002.DAT /mydir1/SQL00003.DAT /mydir2/SQL00002.DAT /mydir2/SQL00003.DAT

/mydir1/* /mydir2/*

T1.1

T1.3

T1.5

T1.7

T1.9

T1.0

T1.2

T1.4

T1.6

T1.8

T2.1

T2.3

T2.5

T2.7

T2.9

T2.0

T2.2

T2.4

T2.6

T2.8

First Extent of Data
Pages for T1

Second Extent of Data
Pages for T1

SMS Table Spaces

What happens on disk during the following ?
CREATE TABLESPACE ts1

MANAGED BY SYSTEM USING ('/mydir1', '/mydir2')
EXTENTSIZE 4

CREATE TABLE t1 (c1 INT ...) IN ts1
CREATE TABLE t2 (c2 FLOAT ...) IN ts1

Associate each container (i.e. directory) with a different file system
 ... otherwise table space capacity limited to that of a single file system
Ensure containers have equal capacity (roughly)
 ... excess in larger containers isn't exploited

SMS Table Spaces

Containers are operating system directories
Can increase table space capacity by enlarging underlying OS file system

Data striped across container by extent
Disk space allocated on demand

Allocate one page at a time (default)
Use db2empfa utility to enable multiple page allocation
Once db2empfa is run, the multipage_alloc database configuration parameter is set to
YES

Database objects (e.g. table data, indexes, large objects) are located
by operating system file names
Data, index, and large object data of a table must reside in the same
table space

DMS Characteristics

Space allocated at creation time
Containers can be added or dropped (data is rebalanced)
Automatic rebalancing
Container size can be extended, reduced, or resized
Capacity limited only by physical storage
File system I/O used for DMS-file manipulation
Direct I/O used for DMS-raw manipulation
High performance potential (especially for OLTP)
Flexible data placement
Can split table objects (i.e. data, index, long field data) into different
table spaces

Associate each container with a different disk(s)
 ... enables parallel I/O, larger table space capacity

DMS Table Spaces

Containers are either operating system files or raw devices
Data striped across containers by extent
Disk space allocated at table space creation

Space Map Pages (SMP) keep track of what extents are used and
which are free

Data and database objects are located by
Object table locates first extent in the object
Extent Map Pages (EMPs) for the object locates other extents in
the object

Table space (Logical) Address Map

0

1
2
3

4
5

6
7
8

31968

Table space
Header
First SMP Extent

Object
Table
Extent Map for T1

First Extents of Data
Pages for T1

Extent Map for T2

First Extent of Data
Pages for T2

Another Extent of Data
 Pages for T1

Second SMP
Extent

DMS Table Spaces

What happens on disk during the following?
CREATE TABLESPACE ts2

MANAGED BY DATABASE USING
(FILE '/myfile' 1024, DEVICE '/dev/rhd7' 2048)
EXTENTSIZE 4 PREFETCHSIZE 8 ;

CREATE TABLE t1
 (c1 INT ...) IN ts2 ;

CREATE TABLE t2
 (c1 FLOAT ...) IN ts2 ;

Table space (Logical) Address Map

0

1
2
3

4
5

6
7
8

31968

Maps object-relative extent# within
T1 to table space-relative page #

ReservedHeader Object
Table EMP

First Extent of SMPs

First Extent of Object Table

Extent Map for T1

1st Extent of T1 Data Pages

2nd Extent of T1 Data Pages

Extent Map for T2

1st Extent of T2 Data Pages

3rd Extent of T1 Data Pages

2nd Extent of SMPs

Maps object-relative extent# within
T2 to table space-relative page #

16
20
32

T1 12
T2 24

Object id (eg fid) First EMP ("Anchor")

Indirect Entries

Double Indirect

DMS Extent Maps

Definition: A meta-data structure stored within a table space that records the
allocation of extents to each object (table, index, etc.) in the table space
Allocated an extent at a time

SMS DMS
Striping Yes Yes

Object Management
Operating system
(via unique file names)

DB2 (Object table and
EMP extents)

Space Allocation Grows/shrinks on
demand

Preallocated

Ease Of Administration

Best
. Little/no tuning required
(e.g.. OS prefetching often
very good)
. Enlarge file system(s)
associated with containers

Good
. Some tuning required (e.g..
EXTENTSIZE
PREFETCHSIZE)
. Can enlarge table space via
ALTER TABLESPACE ADD
CONTAINER

Performance

Very Good Best
. Can achieve up to 5-10%
advantage with raw
containers.
. Index, LOBs, Data for a
single table can be spanned
across table spaces.

SMS versus DMS

Table spaces can be renamed (does not include SYSCATSPACE)
 NOTE: renaming does update the minimum recovery time

Default Database Configuration

CREATE DATABASE ourdb ON path/drive

SYSCATSPACE

TEMPSPACE1

USERSPACE1

Logical Structure
Table Spaces

node0000

SQL00001

SQLT0000.0

SQLT0001.0

SQLT0002.0

Physical Structure
Containers

instance name

CREATE DATABASE Example
CREATE DATABASE hrdb ON C

USING CODESET codeset
TERRITORY territory
COLLATE USING SYSTEM
CATALOG TABLESPACE

MANAGED BY SYSTEM USING (' d:\db2\cattbsp')
EXTENTSIZE 16

USER TABLESPACE
MANAGED BY DATABASE
USING (FILE 'd:\db2\user.f1' 30M, FILE 'd:\db2\user.f2' 30M)
EXTENTSIZE 64
PREFETCHSIZE 128

TEMPORARY TABLESPACE
MANAGED BY DATABASE USING (DEVICE 'd:\db2\temp.f1' 10M) ;

Database Codeset, Territory, and Collating Sequence
Codeset and Territory

Code set is mapped to the DB2 code page
Cannot be changed once the database is created
Refer to section 'Supported territory codes and code pages' in the DB2 Admin Guide

Collating Sequence
Identifies the type of collating sequence to be used for the database
Cannot be changed once the database is created
Five types:

COMPATIBILITY
DB2 Version 2 collating sequence for back level support

IDENTITY
Strings are compared byte for byte

IDENTITY_16BIT
CESU-8 (Compatibility Encoding Scheme for UTF-16: 8-Bit) collation sequence
Can only be used when creating a Unicode database

NLSCHAR
Collating sequence based on the specific codeset and territory

SYSTEM
Collating sequence based on the current territory

CREATE TABLESPACE Examples

CREATE TABLESPACE enterprise
PAGESIZE 8K
MANAGED BY SYSTEM

USING ('/database/firstcnt'), ('/database/secondcnt'), ('/database/thirdcnt')
EXTENTSIZE 16K
PREFETCHSIZE 32
BUFFERPOOL BP8K ;

CREATE USER TEMPORARY TABLESPACE usertemp
MANAGED BY DATABASE

USING (DEVICE '/dev/rusrtmp1' 10M,DEVICE '/dev/rusrtmp2' 10M)
OVERHEAD 24.1 TRANSFERRATE 0.9 ;

 CREATE LARGE TABLESPACE lobtbsp
PAGESIZE 16K
MANAGED BY DATABASE

USING (DEVICE '/dev/rdb2lob1' 1000, DEVICE '/dev/rdb2lob2' 1000)
BUFFERPOOL BP16K ;

DB2 Process Model
DB2 Memory Model
DB2 Table Spaces
Managing Table Spaces
Performance Considerations

Chapter 9: Storage Management

Managing Table Spaces
List tablespaces [show detail]

Lists all table spaces in the database with optional detail on storage use
List status of table spaces

List tablespace containers
Lists all containers for a table space

Rename tablespace
Renaming a table space to a new name
Minimum recovery time of the table space is updated when the rename took place
RENAME TABLESPACE userspace1 TO data2000 ;

Drop tablespace
Any dependent objects are deleted or marked as inoperative

All tables, indexes, keys (primary & foreign) and constraints are dropped
Views, Triggers & Packages are marked invalid
All catalog entries are removed

Table space will not be dropped if there is any table that spans on multiple table spaces, the
table must be dropped first
Table space will not be dropped if there is any table that has the RESTRICT ON DROP
attribute

Altering Table Space

Modify PREFETCHSIZE, BUFFERPOOL, OVERHEAD,
TRANSFERRATE
Enable or disable DROPPED TABLE RECOVERY
Switch table space ONLINE
SMS Table Space

Add a container to the table space on a partition that currently has no containers
DMS Table Space

Add or drop containers to or from the table space, examples:
ALTER TABLESPACE ts0

ADD (FILE 'cont2' 2000, FILE 'cont3' 2000)
ADD (FILE 'cont4' 2000) ;

ALTER TABLESPACE ts0
DROP (FILE 'cont1' 2000) ;

Table space size can be extended, reduced, resized, examples:
ALTER TABLESPACE ts0

EXTEND (FILE 'cont0' 100)
RESIZE (FILE 'cont1' 3000) ;

ALTER TABLESPACE ts0
REDUCE (ALL CONTAINERS 100) ;

Add and Extend Container Size of a DMS Table Space

When new containers are added to a table space or existing containers
are extended, a rebalance of the table space data may occur.
Access to the table space is not restricted during rebalancing (objects can
be dropped, created, populated, and queried as usual) but there will be a
significant impact on performance.
The process of rebalancing when adding or extending containers involves
moving table space extents from one location to another, and it is done in
an attempt to keep data striped within the table space.
The rebalancer starts at extent 0, moving one extent at a time until the
extent holding the high-water mark has been moved.
High-water mark is the page number of the highest allocated page in the
table space, it can be obtained from the LIST TABLESPACES SHOW
DETAIL command.
If space is added above the high-water mark,
rebalance will not occur.

Highest water mark

Example 1: A DMS table space with three containers, extent size of 10,
and the containers are 60, 40, and 80 pages respectively. Assume the
high-water mark is at Extent 14.

Add and Extend Container of DMS Table Space - Example

Stripes 0 to 7 belongs to
 stripe set 0

Add and Extend Container of DMS Table Space - Example

Example 2: An 80-page container is added to the table space, the
container is large enough to start in the first stripe (stripe 0) and end in the
last stripe (stripe 7).

Most of the extents are
relocated, data was
rebalanced
Stripes 0 to 7 belongs to

 stripe set 0

Add and Extend Container of DMS Table Space - Example

Example 3: A 50-page container is added to Example 1. The container is
not large enough to start in the first stripe (stripe 0) and end (stripe 7), it is
then positioned such that it ends at the last stripe.

Some of the extents are
relocated, data was
rebalanced
Stripes 0 to 7 belongs to

 stripe set 0

Adding New Stripe Set

Adding a container will almost always add space below the high-water
mark, meaning rebalance is often necessary.
There is an option to force new containers to be added above the
high-water mark by adding a new stripe set.
The existing containers in the existing stripe sets remain untouched, the
new containers become part of a new stripe set
New containers will be available for immediate use

Adding New Stripe Set - Example

Example 4: A table space with three containers, extent size of 10, and the
containers are 30, 40, and 40 pages.

Stripes 0 to 3 belongs to
 stripe set 0

Adding New Stripe Set - Example

Example 5: Add two new containers that are 30 and 40 pages to Example 4
with the BEGIN NEW STRIPE SET option

ALTER TABLESPACE abc BEGIN NEW STRIPE SET (FILE 'file1' 30, FILE 'file2' 40) ;

Add Container to Existing Stripe Set

Add new containers to any stripe set in the table space
Must specify a valid stripe set
To obtain the valid stripe set, get a table space map by taking a table
space snapshot using the snapshot monitor
Example:

Example:
ALTER TABLESPACE

ADD TO STRIPE SET 1
(FILE 'file1' 30, FILE 'file2' 30) ;

 Range Stripe Stripe Max Max Start End Adj. Containers
 Number Set Offset Extent Page Stripe Stripe
 [0] [0] 0 8 89 0 2 0 3 (0, 1, 2)
 [1] [0] 0 10 109 3 3 0 2 (1, 2)
 [2] [1] 4 16 169 4 6 0 2 (3, 4)
 [3] [1] 4 17 179 7 7 0 1 (4)

Drop and Reduce Container Size of a DMS Table Space

Dropping or reducing a container will only be allowed if the number of
extents being dropped is less than or equal to the number of free extents
above the high-water mark of the table space.
Data rebalancing may occur.
The rebalancer starts with the extent that contains the high-water mark,
moving one extent at a time until extent 0 has been moved.

Drop and Reduce Container of DMS Table Space - Example

Example 1: A table space with three containers, extent size of 10, and
containers are 20, 50, and 50 pages. Assume high-water mark is at
Extent 7

An X indicates that there
is an extent but they are
empty (no data)

Drop and Reduce Container of DMS Table Space - Example

Example 2: Drop container 0, which has two extents. The number of free
extents above the high-water mark is four, therefore dropping container 0
is allowed. Rebalance will occur so that extents in container 0 are
relocated to the other two containers. Noticed that the remaining
containers are renumbered.

States of Table Spaces

DB2 maintains information about the states of table spaces
Common table space states:

 0x0 Normal
 0x1 Quiesced share
 0x2 Quiesced update
 0x4 Quiesced exclusive
 0x8 Load Pending
 0x10 Delete Pending
 0x20 Backup Pending
 0x80 Roll forward pending
 0x100 Restore pending
 0x4000 Offline and not accessible
 0x8000 Drop pending

DB2 Process Model
DB2 Memory Model
DB2 Table Spaces
Managing Table Spaces
Performance Considerations

Chapter 9: Storage Management

I/O Cleaners and Servers

Separate threads of control for fetching and writing pages to/from hard
drives
Can greatly enhance the performance of queries
Parameters are NUM_IOCLEANERS and NUM_IOSERVERS
Set num_iocleaners to be between one and the number of physical
storage devices used for the database
Parameters affect IO cleaners to be triggered:

CHNGPGS_THRESH - % of dirty pages in the buffer pool

SOFTMAX - influence # of logs needed to do crash recovery

Set num_ioservers to one or two more than the number of physical
devices on which the database resides

I/O Cleaners

I/O Prefetch

4K
Synchronous Read

Buffer Pool
Database

Engine

Data access
is faster

DFT_PREFETCH_SZ
NUM_IOSERVERS
SEQDETECT

Prefetch
Read

I/O
Server

I/O
Server

Prefetch
Read

Data is retrieved by I/O server tasks while previously retrieved data is
processed by query tasks, thus reducing I/O bottleneck
Prefetching, in order of best performance

Index prefetch occurs on index scans, RUNSTATs and REORG
Sequential prefetch of data pages: occurs on table scans
List prefetch of data pages: occurs on table scans of unclustered data

Storage Architecture: Best Practices

For LOBs or LONG objects: use SMS or DMS with file containers
To benefit from OS file system caching
LOBs and LONG objects are not buffered in DB2 buffer pools

For the catalog table space: use SMS or DMS with file containers and a
small extent size (2 or 4 pages)

There are lots of relatively small tables in the catalog table space
DMS requires 2 overhead extents per table but SMS requires only 1 page
There are several LOB columns in the catalog tables

For regular user data, it depends:
To maximize convenience and achieve very good performance, choose SMS
To maximize performance, choose DMS with raw containers
Raw containers generally outperform file containers because they avoid the path length
penalty of the OS file system as well as unnecessary double buffering

SMS or DMS ?

Temporary table spaces

Storage Architecture : Best Practices

SYSTEM TEMP table spaces are used for internal temporary tables, for
examples:

Sorts (e.g.. resulting from an order by clause, create index)
Intermediate results
Table reorganization (one REORG option, "REORG with TEMP" creates the
reorganized table in a TEMP table space, then copies it back to the target
table space) ????

Never create more than one TEMP table space for any pagesize
DB2 will likely always choose the one with the largest buffer pool anyway; the
other's resources will be wasted
If all else is equal (i.e. the TEMPs have the same bufferpool, etc.), DB2 will
round-robin between them

Result: you've fragmented your disk resources
SMS is almost always the right choice for TEMP table spaces

Temporary table space demand is often transient (e.g.. month-end processing)
SMS allocates space on demand, and therefore allows disk to be used for other
purposes during off-peak hours (unlike DMS)

